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Abstract. Background/Aim: Previous reports have associated
the KMT2A-ELL fusion gene, generated by t(11;19)(q23,p13.1),
with acute myeloid leukemia (AML). We herein report a
KMT2A-ELL and a novel ZNF56-KMT2A fusion genes in a
pediatric T-lineage acute lymphoblastic leukemia (T-ALL).
Materials and Methods: Genetic investigations were performed
on bone marrow of a 13-year-old boy diagnosed with T-ALL.
Results: A KMT2A-ELL and a novel ZNF56-KMT2A fusion
genes were generated on der(11)t(11;19)(q23;p13.1) and
der(19)t(11;19)(q23,p13.1), respectively. Exon 20 of KMT2A
fused to exon 2 of ELL in KMT2A-ELL chimeric transcript
whereas exon 1 of ZNF56 fused to exon 21 of KMT2A in
ZNF56-KMT2A transcript. A literature search revealed four
more T-ALL patients carrying a KMT2A-ELL fusion. All of them
were males aged 11, 11, 17, and 20 years. Conclusion: KMT2A-
ELL fusion is a rare recurrent genetic event in T-ALL with
uncertain prognostic implications. The frequency and impact of
ZNF56-KMT2A in T-ALL are unknown.

The chromosomal translocation t(11;19)(q23;p13) has been
reported in both acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL) (1). Early cytogenetic studies
did not discriminate between different breakpoints within band
19p13 in cases with t(11;19)(q23;p13), but it later became
clear that two breakpoint clusters existed within band 19p13
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which could be distinguished by fluorescence in situ
hybridization (FISH) (2, 3). Breakpoints within sub-band
19p13.3 have been found in both ALL (primarily in infants
and children) and AML. The translocation t(11;19)(q23;p13.3)
leads to fusion of the histone-lysine N-methyltransferase 2A
(KMT2A; also known as myeloid/lymphoid or mixed lineage
leukemia, MLL) gene in 11q23 with the MLLTI super
elongation complex subunit MLLT1 gene (also known as ENL,
LTG19, and YEATS]) in 19p13.3 generating a KMT2A-MLLT1
fusion (1, 4-6). Two more KMT2A-fusion genes have been
reported with relevance to sub-band 19p13.3: a fusion of KMT2A
with the SH3 domain containing GRB2 like 1, endophilin A2
(SH3GLI) gene [translocation t(11;19)(q23;p13.3)] in a case of
childhood AML (7), and fusion of KMT2A with the vav guanine
nucleotide exchange factor 1 (VAVI) gene at 19p13.3 in a
pediatric AML (8). In sub-band 19p13.2, a recurrent fusion of
KMT2A with the myosin IF (MYOIF) gene [translocation
t(11;19)(q23;p13.2)] has been detected in infant and pediatric
AML (8-10).

Breakpoints within sub-band 19p13.1 were believed to
be exclusively found in AML, where the translocation
t(11;19)(q23;p13.1) resulted in fusion of KMT2A with the
elongation factor for RNA polymerase II (ELL) gene (11).
The overall frequency of ELL as KMT2A’s translocation
partner was found to be 4.1% and KMT2A-ELL fusion was
found in 15% of infant AML, 7% of pediatric AML, and
12% of adult AML (8). Recently, KMT2A-ELL fusion gene
was detected also in two bi-phenotypic leukemias and in
four pediatric T-ALL patients (12-15). Because of the rarity
of T-ALL carrying a KMT2A-ELL fusion gene, we report
here the genetic and clinical features of a pediatric T-ALL
with an unbalanced chromosome translocation between the
chromosome bands 1123 and 19p13 resulting in two fusion
genes: a KMT2A-ELL in which the 5’-part of KMT2A is
fused to ELL, and a novel fusion gene in which the 5’-part
of the zinc finger protein 56 gene (ZNF56) is fused to the
3’-part of KMT2A.
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Table 1. BAC probes used for fluorescence in situ hybridization (FISH) experiments.

BAC clones Accession number Chromosome mapping Targeted gene Position on GRCh38/hg38 assembly Labelling
RP11-770J1 AP001267 4 11q23.3 KMT2A chrl1:118374563-118524770 Green
RP11-861M13 AP000941.6 11923.3 KMT2A chr11:118524771-118608821 Green
CH17-258D2 Not avaliable 19p13.11 ELL chr19:18213782-18431838 Red
CH17-343F16 Not avaliable 19p13.11 ELL chr19:18318183-18514614 Red
CH17-413G9 Not avaliable 19p13.11 ELL chr19:18568795-18764997 Red
CH17-338M17 Not avaliable 19p13.11 ELL chr19:18611693-18826326 Red

Materials and Methods

Ethics statement. The study was approved by the regional ethics
committee (Regional komité for medisinsk forskningsetikk Sgr-@st,
Norge, http://helseforskning.etikkom.no; 2010/1389/REK sgr-gst A),
and written informed consent was obtained from the patient’s
parents. All patient information has been anonymized.

Case report. A previously healthy thirteen-year-old boy presented with
lethargy, pan-cytopenia, hepatosplenomegaly, and pathological
glandules on both sides of the neck. He was diagnosed with T-ALL
and treated according to the Nordic Society for Pediatric Hematology
and Oncology Protocol ALL2008 (16). Because of T-lineage ALL, he
started high risk induction therapy. Due to cytogenetic detection of the
KMT2A rearrangement (see below) and inadequate therapy response,
he was stratified to first to high intensity treatment and then stem cell
transplantation in first remission. His pre-transplantation treatment was
complicated with severe toxicities. A stem cell transplantation with a
10/10 matched unrelated donor was performed after five blocks and
conditioning with total body irradiation and etoposide. He had a skin
graft vs host disease grad 1-2, otherwise it was an uncomplicated
transplantation. Bone marrow evaluation before conditioning and on
day 28 post transplantation showed detectable residual disease but
below quantifiable level. Bone marrow 3 months post transplantation
showed no residual disease, and he is still in remission 20 months post
transplantation.

G-banding and fluorescence in situ hybridization (FISH) analyses.
Bone marrow cells were short-term cultured and analyzed
cytogenetically as previously described (17). FISH analyses of bone
marrow interphase nuclei and metaphase spreads were performed
with the Cytocell KMT2A (MLL) break-apart probe (Cytocell,
Oxford Gene Technology, Begbroke, Oxfordshire, UK).

For the detection of KMT2A-ELL fusion gene a home-made double
fusion FISH probe was used. The BAC probes were purchased from
BACPAC Resource Center which is operated by BACPAC
Genomics, Emeryville, CA (https://bacpacresources.org/) (Table I).
The probes for KMT2A were labelled with fluorescein-12-dCTP
(PerkinElmer, Boston, MA, USA) in order to obtain green signals.
The probes for ELL were labelled with Texas Red-5-dCTP
(PerkinElmer, Boston, MA, USA) in order to obtain a red signal.
Detailed information on the FISH procedure was given elsewhere
(18, 19). Fluorescent signals were captured and analyzed using the
CytoVision system (Leica Biosystems, Newcastle, UK).

RNA isolation and complementary DNA (¢cDNA) synthesis. Total
RNA was extracted from the patient’s bone marrow at diagnosis
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using the miRNeasy Mini Kit (Qiagen, Hilden, Germany). The
concentration and purity of RNA were measured with the QIAxpert
microfluidic UV/VIS spectrophotometer (Qiagen). The quality of
RNA, in terms of RNA Integrity Number (RIN), was assessed using
the Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA, USA) (20).
The RIN was found to be 8.9. For the synthesis of complementary
DNA (cDNA), one ug of total RNA was reverse transcribed using
iScript Advanced cDNA Synthesis Kit for RT-qPCR according to
the manufacturer’s instructions (Bio-Rad, Hercules, CA, USA).

RNA sequencing. High-throughput paired-end RNA-sequencing was
performed at the Genomics Core Facility, Norwegian Radium
Hospital, Oslo University Hospital (http://genomics.no/oslo/) and
106 million 75 bp-reads were generated. The FASTQC software was
used for quality control of the raw sequence data
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The
software FusionCatcher was used to find fusion transcripts (21, 22).

PCR analyses. The primers used for PCR amplification and Sanger
sequencing are listed in Table II. For reverse transcription-polymerase
chain reaction (RT-PCR) and cycle Sanger sequencing, the BigDye
Direct Cycle Sequencing Kit was used (ThermoFisher Scientific,
Waltham, MA, USA) according to the company’s recommendations.
As template, cDNA corresponding to 20 ng total RNA was used. For
the detection of KMT2A-ELL chimeric cDNA fragments, the primer
sets were M13ForMLL5580F1/M13RevELL438R1 and M13For-
MLL-5589F1/M13Rev-ELL-415R1. For the detection of ZNF56-
KMT2A chimeric cDNA fragments, the primer sets were
M13ForZNF56-249F1/M13RevMLL5867R1 and M13ForZNF56-
277F1/M13RevMLL5815R]1.

Sequence analyses were performed on the Applied Biosystems
SeqStudio Genetic Analyzer system (ThermoFisher Scientific). The
basic local alignment search tool (BLAST) software
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for computer
analysis of sequence data (23). The BLAT alignment tool and the
human genome browser at UCSC were also used to map the
sequences on the Human GRCh37/hg19 assembly (24, 25).

Results

G-banding analysis of bone marrow cells at diagnosis yielded
the karyotype 46,XY,der(11)t(11;19)(q23;p13),del(12)(p11),
der(15)?t(15;19)(q26;q11),der(19) t(11;19)(q23;p13)del(19)
(ql1) [10]/46,XY[2] (Figure 1).

Interphase FISH with the KMT2A break-apart probe
showed a normal (yellow) as well as split (separated red and
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Table II. Primers used for PCR amplification and Sanger sequencing analyses. The M13 forward and reverse primer sequences are in bold and

italics.
Name Sequence (57->3’) Position Reference Gene
sequence

MI13For-MLL-5580F1 TGTAAAACGACGGCCAGT-AGGAGTCGAGAAGACAGTCCAGAGC 5580-5604 NM_005933.3 KMT2A
M13For-MLL-5589F1 TGTAAAACGACGGCCAGT-GAAGACAGTCCAGAGCTGAACCCA 5589-5612 NM_005933.3 KMT2A
M13Rev-MLL-5815R1 CAGGAAACAGCTATGACC-AGCTGCTTGCCCCTGATCACAG 5815-5794 NM_005933.3 KMT2A
MI13Rev-MLL-5867R1 CAGGAAACAGCTATGACC-TGTGAGACAGCAACCCACGGTG 5867-5846 NM_005933.3 KMT2A
M13Rev-ELL-438R1 CAGGAAACAGCTATGACC-CCTTCTGGTAGGAGTCGTCGGTG 460-438 NM_006532.3 ELL
M13Rev-ELL-415R1 CAGGAAACAGCTATGACC-GCACACACCGTGATCTTGTCCTG 437-415 NM_006532.3 ELL
MI13For-ZNF56-277F1 TGTAAAACGACGGCCAGT-AGAGCTGTTCCGCCATGCAGAC 277-298  NM_001355194.1 ZNF56
M13For-ZNF56-249F1 TGTAAAACGACGGCCAGT-ACCTTCAGCCTCGCTCCTCCAT 249-270  NM_001355194.1 ZNF56

green) signals of the probe in 183 out of 200 examined nuclei.
On metaphase spreads the proximal part of the KMT2A-probe
(green signal) was located on der(11)t(11;19)(q23;p13), while
the distal part (red signal) was seen on der(19)del(19)
(q1Dt(11;19)(23;p13) (data not shown).

Interphase FISH with the home-made KMT2A-ELL double
fusion probe (Figures 2A-D) showed a yellow fusion signal,
ared ELL signal and two KMT2A signals in interphase nuclei
(Figure 2E). On metaphase spreads the yellow signal was
detected on der(11)t(11;19)(q23;p13), the red signal on normal
chromosome 19, a green signal on normal chromosome 11,
and a green signal on der(19)del(19)(q11)t(11;19)(23;p13)
(Figure 2F).

The FusionCatcher software detected an in-frame KMT2A-
ELL fusion transcript in which exon 20 of KMT2A (nt 5678 in
sequence with accession numbers NM_005933.3) fused to
exon 2 of ELL (nt 208 in sequence with accession number
NM_006532.3) (ACAGTGTGCGTTATGTTTGACTTATG
GTGATGACAGTGCTAAT*GATTCTGTTTCACTGAGGCC
ATCTATCCGATTTCAAGGAAGCC). A ZNF56-KMT2A
fusion transcript was also found in which the untranslated exon
1 of the ZNF56 gene from 19p13.11 (nt 428 in sequence with
accession number NM_001355194.1) fused to exon 21 of
KMT2A (nt 5679 in sequence with accession numbers
NM_005933.3) (CCGCATCCCCCAACGTGCTGGCTTCCT
GACTTCCAAAGTTGCG*GATGCTGGTCGTTTACTATAT
ATTGGCCAAAATGAGTGGACACQ).

RT-PCR and cycle Sanger sequencing confirmed the
results obtained by RNA sequencing/FusionCatcher analysis
(Figure 3).

Discussion

The KMT2A gene fuses in acute leukemias with more than
100 different genes coding for structurally heterogeneous
proteins (8). Most breakpoints occur in the major breakpoint
cluster region of KMT2A which spans from exon 7 to exon
13 (8, 26) (or exon 8 to 14 based on the sequence reported

by Nilson et al. (27)). The exact breakpoint position in the
major breakpoint cluster region of KMT2A influences the
structure of plant homeodomains (PHD) 1-3 and correlates
with clinical outcome in acute leukemias (8, 26, 28, 29).
Breakpoints in intron 10 [listed as intron 11 in the references
(8,26, 28, 29)] are associated with worse prognosis whereas
breakpoints within KMT2A introns 8 and 9 [introns 9 and 10
in references (8, 26, 28, 29)] are associated with better
clinical outcomes (8, 26, 28-30). Recently, a minor
breakpoint cluster region (less than 1% incidence) was
detected between intron 18 and exon 23 of KMT2A, which
is what we detected in our patient (8, 30) [in the study of
(30)], the minor breakpoint cluster region is given between
intron 19 and exon 24). The minor breakpoint cluster region
is usually associated with KMT2A-USP2 and KMT2A-USPS8
fusions (30), but it has also been reported in four T-ALL
patients with KMT2A-AFDN fusion gene (AFDN maps in
6427 and is also known as AF6 and MLLT4) (8).

The fusion genes with breakpoints in the minor breakpoint
cluster region of KMT2A code for KMT2A-fusion proteins
which contain intact PHD1-3 and bromodomain (BD) regions
of KMT2A (30). Although the exact role of an intact PHD1-3
region in the fusion proteins is still unclear, it may be important
(30). PHD1 was shown to play a role in the stability of the N-
terminal part of KMT2A through interaction of PHDI with
PHD4 (31, 32). PHD2 was found to be an E3 ubiquitin ligase
in the presence of the E2-conjugating enzyme CDC34, and
mutation of PHD2 was shown to stabilize the KMT2A protein
and increase its transactivation ability (33). PHD3 was reported
to interact with peptidylprolyl isomerase E (cyclophilin E) and
binds to histone H3K4me3 (31, 34). Furthermore, in vitro
experiments showed that the presence of the PHD regions in
KMT2A-MLLTS3 fusion proteins influenced their function and
inhibited KMT2A-MLLT3 transformation of mouse bone
marrow cells (35). Loss of PHD3 was necessary for KMT2A-
MLLT1-induced hematopoietic stem cell immortalization (36).

The ELL gene (19p13.1) encodes a nuclear protein (accession
number NP_006523) which regulates the activity of the RNA
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Figure 1. Cytogenetic analyses of the pediatric T-ALL. Karyogram showing the der(11)t(11;19)(q23;p13), del(12)(p11), der(15)?t(15;19)(q26;q11),
and der(19)del(19)(q11)1(11;19)(q23,;p13). Breakpoint positions are indicated by arrows.

polymerase II elongation complex (37, 38). The ELL protein
modulates gene expression (39), plays an important role in
embryogenesis (40), and is a partner of steroid receptors, TP53,
hypoxia-inducible factor 1a, and elongation-associated factors
1 and 2. (41-45). However, the exact mechanism of ELL
activity in normal and neoplastic cells is still unclear.

The ELL protein has various functional domains. At the N-
terminal, between amino acid residues 5 to 293, it has the RNA
polymerase II elongation factor ELL domain (pfam10390).
This is bound stably to elongation-associated factors 1 and 2,
and together these act as a strong regulator of transcription
activity (37, 38, 43, 44, 46). This N-terminal domain is
encoded by exons 1-6 of ELL (NM_006532.3). In addition to
its elongation activation domain, ELL contains a RNA
polymerase II interaction domain (37). This domain of ELL
negatively regulates polymerase activity in promoter-specific
transcription, is within the first 60 amino acids and is encoded
by exons 1 and 2 of ELL (37, 47). A nuclear localization signal
is found between amino acid residues 445-459 (encoded by
exon 8). At the C-terminal part of the protein, there is an
occludin homology domain (pfam07303). Occludin is an
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integral membrane protein that localizes to tight junctions (48).
This domain represents a conserved region approximately 100
residues long between amino acid residues 513-614 thought to
mediate protein interactions (48, 49). This C-terminal domain
is encoded by exons 9-12 of ELL (NM_006532.3). Between
amino acid residues 534-619 (encoded by exons 9-12) one also
finds a SMC_prok_A domain (chromosome segregation protein
SMC, primarily archaeal type TIGR02169). SMC (structural
maintenance of chromosomes) proteins bind DNA and act to
organize and segregate chromosomes for partition (50).

Three types of KMT2A-ELL fusion transcripts have been
reported (51). In type 1 fusion transcripts, found in the majority
of cases, exons 9, 10, 11 or 12 of KMT2A (within the major
breakpoint cluster region) fuse to exon 2 of ELL (11, 30, 52-
57). In type 2, KMT2A exon 9 [exon 10 according to Nilson et
al. (27)] fuses to ELL exon 3 (58, 59). Thus, types 1 and 2 of
KMT2A-ELL proteins both maintain the ability to interact with
RNA polymerase II and be active in transcription elongation,
whereas the functional domain required for inhibition of
promoter-specific initiation by ELL is absent (60). In type 3,
exon 8 or 9 of KMT2A fuses to exon 6 of ELL (51, 61-63).
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Figure 2. Fluorescence in situ hybridization (FISH) analysis of the pediatric T-ALL using a home-made, dual color fusion probe for the detection
of the chimeric gene histone-lysine N-methyltransferase 2A - elongation factor for RNA polymerase Il (KMT2A-ELL) gene. (A) Ideogram of the
chromosome 11 showing the mapping position of the KMT2A gene at 11q23.3 (vertical green line). (B) Diagram showing the FISH probes RP11-
770J1 and RP11-861M13 for KMT2A. The neighboring genes are also shown. (C) Ideogram of chromosome 19 showing the mapping position of
the ELL gene at 19p13.11 (red box). (D) Diagram showing the FISH probes CH17-258D2, CH17-343F16, CHI17-413G9, and CH17-338M17 for
ELL. The neighboring genes in this region are also shown. (E) FISH results with the KMT2A (green signal) and ELL (red signal) probes on
interphase nuclei. A nucleus with a yellow signal for the KMT2A-ELL fusion, a red signal for normal ELL, a green signal for normal KMT2A, and
a green signal corresponding to the 3’end of the KMT2A which was moved to der(19). (F) FISH results with the KMT2A (green signal) and ELL
(red signal) probes on a metaphase spread. A KMT2A-ELL fusion yellow signal on der(11), a normal KMT2A green signal on chromosome 11, a
KMT?2A green signal on der(19), and a normal ELL red signal on chromosome 19 are shown.
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A

KMT2A exon 20 ¢ ELL exon 2

ATGGTGATGACAGTGCTAATGAT TCT GTTTCACTGAGGCC

B ZNF56 exon 1

¢ KMT2A exon 21

TCCTGACTTCCAAAGTTGCGGATGC TGGTCGTTTACTATA

Figure 3. Molecular genetic analyses of the pediatric T-ALL. I[(A) Partial sequence chromatogram showing the junction position of exon 20 of
KMT2A with exon 2 of ELL in the chimeric transcript. (B) Partial sequence chromatogram showing the junction position of exon 1 of ZNF56 with

exon 21 of KTM2A.

This transcript codes for a KMT2A-ELL protein which
abolishes the function of the RNA polymerase II elongation
factor ELL domain, i.e., it cannot interact with RNA
polymerase II to active transcription elongation, nor can it
mediate negative regulation of promoter-specific transcription
initiation (47, 60). The KMT2A-ELL proteins which are
encoded by the above-mentioned three fusion transcripts retain
from the KMT2A protein the amino-terminal region which
interacts with menin, the AT hooks which bind to the minor
grove of DNA, the nuclear localization signal, and the CXXC
domain which binds to unmethylated CpGs (64, 65). From the
ELL protein they retain the nuclear localization signal, the
three phosphorylation sites, the occludin homology domain,
and the SMC_prok_A domain.

Our patient had a KMT2A-ELL chimeric transcript in which
exon 20 of KMT2A fused with exon 2 of ELL (we have called
it type 4 KMT2A-ELL chimeric transcript). Thus, the
breakpoint is within the minor breakpoint cluster region of
KMT2A (8, 30). To the best of our knowledge, this chimera
was previously reported only in a 20-year-old male patient who
also had T-ALL, but with a seemingly normal karyotype (13).
Based on the reference sequences of KMT2A (NM_005933.3/
NP_005924.2) and ELL (NM_006532.3/NP_006523.1), the
chimeric KMT2A-ELL transcript codes for a 2461-amino acid
residue protein and retains, in addition to the above-mentioned
domains of KMT2A, the three PHD domains and the
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bromodomain together with ELL functional domains encoded
by KMT2A-ELL transcripts 1-3. The presence of KMT2A
PHD3 and bromodomain might be of importance in the role of
the transcript 4 in leukemogenesis. PHD3 domain together with
bromodomain are involved in a highly complex epigenetic
mechanism (66).

Although more studies are required to address possible
differences in the leukemogenesis of the different types of
KMT2A-ELL fusion transcripts, previous reports showed that
the C-terminal region of ELL (occludin homology domain
and SMC_prok_A domain) was necessary and sufficient for
immortalization of myeloid progenitors by KMT2A-ELL,
whereas the transcriptional elongation domain of ELL was
nonessential (60, 67).

In addition to the KMT2A-ELL fusion gene/transcript, our
patient carried a novel reciprocal ZNF56-KMT2A fusion gene
which, based on FISH results, was generated on the
chromosome der(19)del(19)(q1t(11;19)(q23;p13). ZNF56
maps on 19p13.11, codes for a zinc finger protein and RNA
sequencing of total RNA from 20 human tissues showed it is
expressed on all of them (https://www.ncbi.nlm.nih.gov/
gene/7608). The ZNF56 gene maps on chromosome position
chr19:19,887,383-19,946,990, whereas the ELL gene on
position chr19:18,553,473-18,632,937. Therefore, in our case,
it is likely that the area between these two genes has been
deleted on der(19) in order to fuse 5’of ZNF56 and 3’of
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Table III. The published T-lineage acute lymphoblastic leukemias carrying a KMT2A-ELL fusion.

Gender/Age Reported karyotype KMT2A-ELL fusion transcript Reference (patient)
Male/20 46 XY KMT2A exon 20-ELL exon 2 (13) (patient A51)
Male/11 46,XY,ins(19;11)(p13.3;q23q23),del(12)(p13) KMT2A exon 10-ELL exon 2 (14) (patient USI: PAUAJA)
Male/11 46, XY Not determined (15) (patient 18)
Male/17 46,XY,t(11;19)(q23;p13.1),t(12;14)(p11.2;q24) Not determined (15) (patient 19)
Male/13 46,XY,der(11)t(11;19)(q23;p13).del(12)(p11).der(15)? KMT2A exon 20-ELL exon 2 Present study

t(15;19)(q26;q11).der(19)del(19)(q11)t(11;19)(q23;p13)

KMT2A. This interpretation is supported by the fact that the
FISH-analysis only showed signal for KMT2A (green), but no
red signal for ELL, on der(19) (Figure 2E and F).

In the detected ZNF56-KMT2A fusion transcript the
untranslated exon 1 of the ZNF56 gene (from 19p13.11) fused
to exon 21 of KMT2A. In exon 21 of KMT2A there is an ATG
which could act as a starting codon (NM_005933.3; position
5790-5793). Thus, in ZNF56-KMT2A the part of KMT2A
coding for the last 2047 amino acids (positions 1923-3969 in
the sequence with accession number NP_005924.2) is under
control of the ZNF56 promoter. This part of the KMT2A protein
contains PHD4, phenylalanine-tyrosine-rich N-terminal domain
(FYRN), threonine aspartase 1 (TASP1) cleavage site 1, TASPI1
cleavage site 2, transactivation domain, phenylalanine-tyrosine-
rich C-terminal domain (FYRC), WD repeat-containing protein
5 (WDRY5) interaction motif, Su(Var)3-9, enhancer-of-zeste,
trithorax domain (SET), and post-SET domain (68).

Fusion genes in which the KMT2A is the 3’-end partner gene
(reciprocal-KMT2A) were shown to have oncogenetic
properties (69). In a mouse model, expression of AFFI-
KMT2A (also known as AF4-MLL), the reciprocal-KMT2A
product of the t(4;11)(q21;q23), was found to induce ALL (70).
In another study, expression of AFFI-KMT2A in cord blood
CD34-positive  cells transiently enhanced long-term
hematopoietic reconstitution in immunodeficient mice, but it
was not sufficient for leukemia development (71). AFF1I-
KMT2A was also shown to alter transcription and epigenetic
signatures, to mediate transcriptional elongation of 5-
lipoxygenase mRNA, and to interact with the SIAH ubiquitin
ligases (72-74). Oncogenic properties were also found for the
reciprocal KMT2A fusions NEBL-KMT2A, LASP1-KMT2A,
MAML2-KMT2A, and SMAPI-KMT2A generated by the
chromosome aberrations t(10;11)(p12;q23), t(11;17)(q23;q12)
inv(11)(q21qg23), and t(6;11)(q13;q23), respectively (69, 75,
76). Recently, YAPI-KMT2A and VIM-KMT2A fusion genes
were found in sarcomas (77-80) and an MNI-KMT2A fusion
in a case of dural-based spindle cell neoplasm (81).

The Mitelman Database of Chromosome Aberrations and
Gene Fusions in Cancer (82) contains information on 428
cases of various hematological malignancies with the
chromosome translocation t(11;19)(q23;p13) (database last

updated on October 15,2020). Only 44 of them (10.3 %) are
T-lineage ALL/lymphoblastic lymphoma. However, the
KMT2A-ELL fusion (detected by FISH, RT-PCR, or high
throughput sequencing) was found in five male patients with
T-ALL, the present case included (Table III) (13-15). The
fusion transcript junction was between exon 10 of KMT2A
and exon 2 of ELL in one case (14), between exon 20 of
KMT?2A and exon 2 of ELL in two cases [(13), present case],
whereas two cases were reported without information on the
junction of the fusion transcript (15). The current data are
very limited in order to draw any conclusion on the
prognosis of KMT2A-ELL fusion in T-ALL but in an
international study with pediatric AML patients, the 5-year
overall survival and the 5-year event-free survival of patients
with t(11;19)(q23;p13.1) (corresponding to KMT2A-ELL)
were 61% and 46%, respectively (83).

In conclusion, we describe herein a pediatric T-ALL with
a KMT2A-ELL and a novel ZNF56-KMT2A fusion genes
generated on the derivative chromosomes 11 and 19,
respectively. A very rare KMT2A-ELL fusion transcript was
found in which exon 20 of KMT2A fused to exon 2 of ELL.
This fusion transcript was previously reported only in a 20-
year-old male patient who also had T-ALL. In the novel
ZNF56-KMT?2A fusion transcript the untranslated exon 1 of
the ZNF56 gene fused to exon 21 of KMT2A.
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