
The Oncologist, 2022, 27, 272–284
https://doi.org/10.1093/oncolo/oyab048
Advance access publication 22 February 2022
Review Article

Received: 11 June 2021; Accepted: 5 November 2021.
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

The Essentials of Multiomics
John L. Marshall1,∗, , Beth N. Peshkin2, , Takayuki Yoshino3, , Jakob Vowinckel4, ,  
Håvard E. Danielsen5, , Gerry Melino6, , Ioannis Tsamardinos7, , Christian Haudenschild8, 
David J. Kerr9, Carlos Sampaio10, , Sun Young Rha11, , Kevin T. FitzGerald12, , Eric C. Holland13, , 
David Gallagher14, , Jesus Garcia-Foncillas15, , Hartmut Juhl16,

1Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
2Georgetown University, Lombardi Comprehensive Cancer Center, Washington, DC, USA
3National Cancer Center Hospital East, Chiba, Japan
4Biognosys AG, Schlieren, Switzerland
5Institute for Cancer Genetics and Informatics, Oslo University Hospital, Radiumhospitalet, Montebello, Oslo, Norway
6Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
7JADBio Gnosis DA, N. Plastira 100, Science and Technology Park of Crete and Institute of Applied and Computational Mathematics, Foundation 
for Research and Technology Hellas, Heraklion, GR, Greece
8Personalis, Inc., Menlo Park, CA, USA
9Nuffield Division of Clinical and Laboratory Sciences, Level 4, Academic Block, John Radcliffe Infirmary, Headington, Oxford, UK
10Clinica AMO, Rio Vermelho, Salvador-BA, Brasil
11Yonsei Cancer Center, Yonsei University College of Medicine, Seodaemun-Ku, Seoul, Korea
12Department of Medical Humanities in the School of Medicine, Creighton University, Omaha, NE, USA
13Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
14St. James’s Hospital/Trinity College Dublin, St. Raphael’s House, Dublin, Ireland
15Cancer Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain
16Indivumed GmbH, Hamburg, Germany
∗Corresponding author: John L. Marshall, MD, The Ruesch Center for the Cure of Gastrointestinal Cancers, Frederick P. Smith Endowed Chair, Chief, 
Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Road, Washington, DC 20007, 
USA. Tel: +1 202 444 2223; Email: marshalj@georgetown.edu

Abstract 
Within the last decade, the science of molecular testing has evolved from single gene and single protein analysis to broad molecular profiling as 
a standard of care, quickly transitioning from research to practice. Terms such as genomics, transcriptomics, proteomics, circulating omics, and 
artificial intelligence are now commonplace, and this rapid evolution has left us with a significant knowledge gap within the medical community. 
In this paper, we attempt to bridge that gap and prepare the physician in oncology for multiomics, a group of technologies that have gone from 
looming on the horizon to become a clinical reality. The era of multiomics is here, and we must prepare ourselves for this exciting new age of 
cancer medicine.
Key words: cancer; multiomics; genomics; transcriptomics; proteomics; digital pathology; machine learning; artificial intelligence.

Implications for Practice
Tumors are constantly evolving, but so is our technology. Through multiomics—combined genomics, transcriptomics, proteomics, digital 
pathology, and other technologies yet to fully unfold—we can now obtain a complete dynamic vision of cancer. The resulting volume of 
data for any single patient is becoming so enormous that only artificial intelligence can decipher their clinical significance for use in the 
clinic. The potential impact on efficiency and patient outcomes is huge, but the practicing physician risks being left behind. In this paper, 
we attempt to bridge the gap between multiomics technology and oncology practice.

Introduction
Cancer is a group of distinct genetic diseases that result from 
changes in the genome of cells in the body, promoting uncon-
trollable growth, metastasis, and disruption of normal physio-
logical functions. This recognition, along with advances in 
technology, has led to the field of precision medicine, where 

the measurement of specific abnormalities in a specific cancer 
is galvanizing therapeutic strategies targeted to an individual 
instead of a population. As a result of continuous advances 
in molecular testing, including DNA sequencing techniques, 
the rapid expansion of actionable molecular targets, and a 
reduction of associated costs, molecular testing has become 
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an essential element in the treatment decision-making of al-
most every cancer today. As more genetic testing is being done 
and many services now provide whole exome or even whole-
genome sequencing, we recognize that the next phase of dis-
covery will come from the measurement of post-translational 
molecular characteristics, including RNA, micro-RNA, protein, 
and phospho-protein levels. Technology has kept pace to en-
able the testing with a reasonable turnaround time. However, 
as we expand to broader testing, it is increasingly critical that 
the preanalytic quality of the tissues being tested is controlled; 
we recognize that tumor content and ischemia times can dra-
matically alter our results. Our clinical infrastructure will re-
quire changes to support this level of tissue management.

Within the last decade, the science of molecular testing 
has evolved from single gene and single protein analysis 
to broad molecular profiling as a standard of care, quickly 
transitioning from research to practice. Commercial services 
have rapidly expanded to provide practicing clinicians with 
the most up-to-date testing and researchers with fascinating 
data sets to explore. However, as the science expands and be-
comes more complex, the clinical reporting can fall out of 
date quickly. With this rapid transition has come a significant 
knowledge gap within the medical community. As more testing 
is done, it becomes increasingly important to understand the 
technologies themselves so that appropriate interpretation 
can be made at the bedside. Not only is the technology itself 
becoming more complex but also we now see a time where we 
are moving beyond genetics to proteomics and metabolomics. 
The amount of data obtained on any single patient is so large 
that we will become increasingly dependent on artificial intel-
ligence to interpret the clinical significance of the findings. We 
predict that in the near future, tissues will be tested using mul-
tiple technologies simultaneously, termed “multiomics” , and 
we anticipate this will result in improved efficiency and out-
comes in our treatment of cancer and other serious illnesses.

Having grown beyond the infancy of precision medicine 
but not yet into a fully matured science, we find ourselves in 
the awkward adolescents of scientific progress. As our ability 
to measure particular extensive molecular characteristics of 
an individual cancer grows, novel technologies including 
digital pathology and artificial intelligence emerge to support 
our ultimate decision-making process. Technologies that can 
measure circulating factors that predict resistance or sensi-
tivity are being offered, in many instances without the clin-
ician fully understanding the sensitivity and specificity of the 
test they are ordering. Never before in our medical history 
has technology moved so quickly. We in clinical practice are 
receiving complex molecular reports, which often leave us un-
certain as to their clinical impact. In this paper, we provide an 
overview of the key elements critical to multiomic analysis so 
that the practicing clinician will better understand the impli-
cations on clinical practice today. While we predict that our 
future will ultimately become simplified and more precise, we 
must navigate the adolescent phase we are in to provide our 
patients with the best possible care.

DNA: Next-Generation to Whole Exome to 
Whole-Genome Sequencing
Technology
DNA is fundamental to life and to molecular profiling. 
Analytically speaking, DNA is more stable than RNA and 
protein, making it easier to measure and the logical place 

for the field of precision medicine to start. In oncology, our 
interest lies in cellular aberrations, and single gene mutation 
testing has had a major therapeutic impact on the treatment 
of patients living with cancer.1 

The first sequencing techniques could sequence only 
short molecules of 20-30 nucleotides. The advent of next-
generation sequencing (NGS) allowed expansion to whole-
exome sequencing (WES), the sequencing of all exons (the 
protein-coding regions) in a genome, and whole-genome 
sequencing (WGS), which delineates the order of the total nu-
cleotides in an individual’s DNA, thereby defining variations 
in any genome segment.2,3 Now it is possible to sequence hun-
dreds of genomes a day in a single laboratory. NGS method-
ology is multipronged, including DNA fragmentation, library 
preparation, massive parallel sequencing, bioinformatics ana-
lysis, and variant/mutation annotation and interpretation 
(see Next-generation Sequencing later in this section).4 The 
technology has exploded due to advanced analytics and com-
puting power, and the costs have fallen dramatically. Genome 
sequencing is beating Moore’s law many times over, and 
falling costs are the main driver in the journey toward wider 
adoption of these tools globally (Fig. 1).5-9 Today it is possible 
to decipher a genome (germline) for less than $500.

Advancing from single capillary reads to flow cells with bil-
lions of independently addressable DNA amplicons, multiple 
technologies compete on this multi-billion-dollar market, 
with a range of advantages and disadvantages. DNA and 
RNA can be decoded using short stretches of information for 
point mutations or gene expression (counting of molecules) 
or longer stretches for copy number and structural variation, 
including fusions or translocations. Of course, there is a 
whole ecosystem of tools and kits developed to facilitate the 
creation of these DNA and RNA “libraries of molecules,” and 
these are continuously evolving. Major government initiatives 
(ClinVar, ClinGen, COSMIC, and others) and overall global 
sharing of discovered disease-associated variants or other 
changes are also helping to create the framework necessary to 
interpret these results.
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Figure 1. The decreasing cost of human genome sequencing over the 
last 20 years. The beginning of this millennium has seen the cost (in 
US Dollars) of sequencing per human genome decrease at a much 
greater rate than that predicted by Moore’s law—shown on a logarithmic 
scale using data generated by the National Human Genome Research 
Institute.6 The decline in cost began outpacing that expected from 
Moore’s Law at the beginning of 2008 when sequencing technology 
transitioned to next-generation sequencing (NGS) from Sanger 
sequencing.
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Tissue Is the Issue
We often overlook that the backbone of high-quality, inform-
ative omics data—optimal tissue collection and fixation—is 
in the hands of healthcare facilities. The goal of fixation is to 
preserve cells and tissue components in as close to an in vivo 
state as possible, allowing confidence in diagnostic, prognostic, 
and predictive results. The importance of tissue handling is dis-
cussed later in this text (see The Importance of Tissue Quality 
section). Formalin-fixed paraffin-embedding is routinely used 
for clinical samples—it uses stable reagents and is relatively easy 
and accessible. However, although formalin-fixation cross-links 
macromolecules and stabilizes the tissue structure sufficiently 
for subsequent histological analysis, it allows degradation of nu-
cleic acids and other small molecules.10 Freezing tissue in liquid 
nitrogen is optimal for molecular analyses because it literally 
freezes all molecular processes in time; however, ischemia time 
becomes increasingly critical to limit the degradation of mol-
ecules before freezing. Ideally, every healthcare facility should 
have a tissue collection and preservation framework in place, 
but this is not a standard that is established or maintained.

Most labs running genomic analyses have a pathological 
review protocol in place to assess tumor quantity and quality 
before proceeding. Often a biopsy sample contains a portion 
of tissues other than tumor tissue, and the labs will perform 
laser capture microdissection or macrodissection to improve 
the tumor cell yield.11 This extra step, when necessary, comes 
at a cost. The importance of the quality of the DNA ex-
tracted cannot be overemphasized as it affects the subsequent 
sequencing quality and final results.12

Next-generation Sequencing
Commonly used NGS technologies can read only short frag-
ments of DNA (less than 50-1000 bp), but newer technologies 

are slowly gaining traction and allow read length in the range 
of 10-100 kp. The obtained random short sequences are then 
mapped to a reference genome to create a consensus answer; 
the higher the number of reads accumulated for a particular 
sample and the deeper the depth of coverage, the more sensi-
tive and accurate the assay will be.13,14

The first step of NGS is library preparation. A library is a 
collection of DNA fragments from the sample of interest with 
adapters (common short sequences with unique barcodes) an-
nealed to their 5ʹ and 3ʹ ends. The adapters allow DNA frag-
ments to attach to the sequencing flowcell, in turn enabling 
sample identification because of their unique barcode (Fig. 2).

To identify a tumor mutation, it is essential to have a 
high-quality library because poor-quality material will 
provide low yields. If the sample is of poor quality when 
sequenced, the diversity will drop significantly, and the depth 
of coverage will be substandard. Sometimes polymerase chain 
reaction (PCR) is used to amplify (generate millions of copies 
of) a particular region of DNA from an initially small sample. 
However, hybrid capture-based target enrichment is a su-
perior method of achieving the same goal15; it uses probes 
(DNA or RNA single-stranded oligonucleotides) to enrich a 
particular region of the genome, which can then be sequenced 
deeply. The need for amplification and enrichment will be 
qualified in the report given to the oncologist. If the DNA 
is actually degraded, which frequently occurs with tissue fix-
ation, the analyst will see a very high noise rate, which will 
mask rarer mutations.

Impact
Physicians and patients are becoming more aware of the avail-
ability of genomic tests that might predict response to and 
affect the choice of therapy. However, there may be barriers. 
It is currently challenging for governments and insurance 

Figure 2. Next-generation sequencing (NGS). The first step of NGS is library preparation. A library is a collection of DNA fragments from the sample of 
interest with adapters (common short sequences with unique barcodes) annealed to their 5ʹ and 3ʹ ends. The adapters allow DNA fragments to attach 
to the sequencing flowcell, and their unique barcodes enable sample identification.
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companies (depending on the region of practice) to adopt 
genomic testing universally because the value is still unclear; 
there is economic and humanitarian benefit in giving drugs 
that are going to work and avoiding those that are predicted 
not to work, but targeted therapies are expensive and gen-
omic testing has thus far failed to clearly show worth in the 
majority of cases.16

Challenges
The confusion lies in the value of single-gene testing versus 
small panel testing versus large panel testing (whole exome 
or whole-genome sequencing). How much is the standard of 
care, and how much is still experimental?

Clinical laboratories, governments, and insurance com-
panies will probably have to work directly with pharmaceut-
ical and biotechnology companies to lower genomic testing 
costs; testing could be made more affordable by cost-sharing.

There is a discrepancy between oncology practice and 
hereditary genetics practice regarding the identification of 
somatic versus germline alterations. There is a huge effort in 
hereditary genetics to interpret the functionality and clinical 
relevance of germline alterations. However, in oncology prac-
tice, tumor tissue, usually not accompanied by viable normal 
tissue, is sent out to the labs for testing. The clinician must 
then interpret the lab report and decide whether the findings 
are clinically relevant or not without knowing if certain mu-
tations are somatic or germline.

As our knowledge grows, it is becoming clear that DNA 
sequencing cannot be our only predictive model. A recent 
example involves immune checkpoint pathway inhibition, 
which has seen many recent drug approvals. Microsatellite 
instability, tumor mutational burden (TMB), and PD-1/
PD-L1 expression are often tested to guide these therapies. 
However, it has been found that unearthing variants or even 
the sum of variants may not always be enough to predict pa-
tient response to treatment.17 Cancers are found to modify an 
individual’s genome in a host of ways, including loss of human 
leukocyte antigen (HLA) alleles and major reprogramming of 
gene expression machinery.18 This means that more complex 
multiomic interrogations are necessary to make sense of any 
particular patient’s situation, which turns our current idea of 
molecular profiling on its head and makes payers very wary 
of the cost implications.

RNA
Technology
While DNA sequencing reflects the fundamental genetics of 
a tumor, RNA sequencing (RNA-seq; transcriptomic ana-
lysis) captures the current state of a cancer cell and is more 
reflective of the cancer’s biology. The transcriptome is the en-
tire collection of RNA molecules or transcripts in a cell, crit-
ical to cellular function, including gene expression, coding, 
decoding, and regulation.19,20 Clinically speaking, messenger 
RNAs (mRNAs) and microRNAs (miRNAs) are currently of 
most interest as potential cancer biomarkers. mRNAs carry 
the sequences that code for protein synthesis. miRNAs are 
small non-coding regulatory molecules that are actively pro-
duced and serve as a regulatory control over other RNAs.21

The ability of RNA analyses to provide a dynamic, real-time 
measure of a patient’s cancer translates into predictive power 
beyond gene profiling alone. In their novel international 

WINTHER trial, Rodon et al used genomics combined with 
transcriptomics to match patients to treatments.22 After 
matching according to driver gene analysis, gene expres-
sion differences between tumors and normal tissues (mRNA; 
NGS) were assessed and used to tailor therapy based on a 
novel algorithm. The proportion of patients matched to treat-
ment increased from 23% to 35% once transcriptomics was 
incorporated. The combination of DNA and RNA sequencing 
is now routinely used by profiling companies in biomarker 
assessment to predict patient cancer therapy.

Gene fusions and mRNA variant expression are among the 
molecular aberrations best defined using transcriptomics.23,24 
Gene fusions (BCR-ABL being the most well-known) can re-
sult in altered production of RNA and the subsequent proteins 
and are more easily detected using RNA profiling, whereas 
they can be a challenge to detect when looking at DNA 
alone.24 One caveat is that RNA is more unstable than DNA, 
and hence its levels are more influenced by tissue work-up 
and storage methods; it cannot be emphasized enough that 
tissue quality and handling matter (see The Importance of 
Tissue Quality section).

As touched upon in the DNA section, the assessment of 
gene expression signatures (GES) using RNA-seq is calling 
our established treatment biomarkers into question. The 
retrospective analysis of tumor molecular data from the 
phase III JAVELIN Renal 101 trial25 of frontline avelumab 
plus axitinib compared to sunitinib in patients with advanced 
renal cell carcinoma challenged the standard biomarkers used 
to predict therapy.18 Hence, neither tumor mutational burden 
nor programmed cell death ligand 1 (PD-L1) levels but in-
stead newly identified immunomodulatory and angiogenesis 
GES appeared to define progression-free survival. 

Single-cell sequencing (scRNA-seq) is now possible, al-
though still experimental and beyond the scope of this paper. 
scRNA-seq technology is being used to define intratumoral 
transcriptomic heterogeneity, which is important for 
therapeutic response, including the development of drug 
resistance.26,27

miRNA analysis is also still experimental, and expression 
levels are often assayed according to a particular research 
laboratory’s area of expertise. Methods include microarray 
analysis, real-time PCR (more quantitative than traditional 
reverse transcriptase [RT]-PCR), Northern blot, and in situ 
hybridization.28 Changes in miRNA expression have been 
shown to predict response to cancer therapy. For example, 
miRNA-126 levels in patient blood, which were observed to 
change during chemotherapy plus bevacizumab treatment, 
were proposed as a possible biomarker for resistance to anti-
angiogenic-containing therapy.29 Additionally, circulating-
miRNAs in patients with HER2-positive breast cancer could 
discriminate between patients with and without a complete 
response to lapatinib- and/or trastuzumab-based therapy, 
suggesting their use as an early non-invasive biomarker of 
response.30

The analysis of exosomal RNA in liquid biopsies and its 
potential uses in the oncology clinic are also under investiga-
tion (see Circulating Omics: Liquid Biopsies section).

Impact
Gene fusions such as NTRK (site agnostic), BCR-ABL 
(chronic myeloid leukemia), or ELM4-ALK fusions (lung 
cancer) are best detected using RNA analysis. Historically, 
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gene fusions have been assayed by fluorescence in situ hy-
bridization and RT-PCR, but more recently, these highly 
clinically significant molecular predictors are being detected 
using RNA-based and DNA-based NGS assays.31 In a re-
cent paper, ESMO guidelines were updated to recommend 
NTRK fusion assaying for “any malignancy at an advanced 
stage” but stated that the adoption of NGS-based methods in 
contexts other than academic laboratories was proving chal-
lenging, primarily due to costs, a relatively long turnaround 
time of 1-3 weeks, and the need for excellent tissue quality.32 
However, several clinical labs have now adopted this tech-
nique as the standard.

Determination of GES using RNA-seq opens up new pre-
dictive biomarker avenues, and miRNA analysis has potential 
in predicting drug response and resistance, although it still has 
a way to go before becoming a clinical standard of care.

Challenges
Tissue–based RNA is unstable, necessitating appropriate 
tissue collection and handling (see The Importance of Tissue 
Quality section). Interpreting RNA results and translating 
them into specific clinical recommendations will be a critical 
next step.

Protein: The Proteome
Technology
Proteomics—the study of all expressed proteins in a cell or 
tissue—is increasingly possible due to improvements in instru-
mentation and computer algorithms (Fig. 3) and is becoming 

increasingly available as a routine oncology technique. 
While laboratory tests based on single proteins, like HER2, 
PD-L1, and MSI, are already in routine use today, the shift 
toward measuring and interpreting entire proteomes is still 
in the early stages. Historically, proteomics has evolved from 
western blots and 2D electrophoretic techniques, which suffer 
from low throughput, limited quantitative precision, and lack 
of robustness. The quest for more in-depth analysis of cel-
lular systems and increased quantitative ability, precision, and 
throughput led to liquid chromatography (LC) coupled mass 
spectrometry (MS) and only over the last 3-5 years, data–in-
dependent acquisition (DIA/SWATH) MS. Using mass spec-
trometers, antibody quality and specificity issues are avoided, 
and the protein(s) in any sample can be identified with great 
confidence due to an ability to cross-reference them with the 
actual molecular entities in a spectral library.

Traditional targeted MS–based proteomics methods (single 
and parallel reaction monitoring [SRM/PRM]) enable sensi-
tive and consistent measurement of a low (1-100) number of 
proteins over many hundreds to thousands of samples. Data-
dependent acquisition (DDA) methods allow deep proteome 
profiling up to more than 10  000 proteins per sample but 
lack reproducibility in cohorts of more than 100 samples. 
Modern DIA/SWATH methods combine the scalability and 
throughput of targeted methods with proteome depth of up 
to 10 000 proteins quantified with high precision in every run 
and are well suited for proteome-wide profiling of large co-
horts of patients with cancer.33

Detection and quantification of post–translational modifi-
cations, such as phosphorylation, is also possible due to the 
high specificity of the MS spectrum. Importantly, profiling of 

Figure 3. The recent success of proteomics approaches is linked to the availability of next-generation mass spectrometers. The number of publications 
per year for different proteomics-related approaches was obtained from PubMed. (Inset) The term “proteome” was coined nearly a decade after 
the invention of the mass spectrometry (MS) principle. Since the advent of electron-spray ionization and matrix-assisted laser desorption ionization 
commercial mass spectrometers, the use of MS continues to increase, including the application of MS for protein investigation and, more specifically, 
proteomics. Main: Early adoption of MS-based proteomic techniques was dominated by 2D electrophoresis (gray), followed by targeted analysis using 
multiple/single reaction monitoring (MRM/SRM, pink). Since 2010, modern and comprehensive proteomic techniques such as tandem mass tag (blue) 
and data-independent acquisition (DIA/SWATH, red) have revolutionized the proteomics field.
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phospho-proteomes requires the same instrumentation and 
workflow as used for global proteomics, although low abun-
dance phospho-peptides require an enrichment step before 
the LC-MS measurement.34

Importance of Normal versus Tumor Comparisons
The differentiation between tumor-specific proteome signa-
tures and those that arise from inter-individual differences is 
vital in precision oncology. These “individual” signatures are 
especially pronounced in the plasma proteome.35

Several thousand proteins can be detected in plasma. Most 
of these are known, of high abundance (such as albumin and 
immunoglobulins), and usually not the proteins of interest; 
hence they can be depleted using an antibody column. After 
that, low abundance proteins can be analyzed. Plasma from 
patients living with cancer usually contains many more pro-
teins than healthy plasma, and this in itself is interesting.

For tissue samples, the best way to control for inter–in-
dividual variability is the measurement of matched tumor 
and adjacent healthy tissue samples, in combination with 
tight control of sample quality. This matters for all kinds of 
analytes, such as DNA, RNA, and proteins. However, it is 
crucial to assure that tissue is truly “normal” for quantitative 
comparisons, such as protein expression. Studies have shown 
that adjacent “normal” tissue in close (less than 1 cm) prox-
imity to the cancer tissue frequently has decreased expression 
levels compared to more distant tissue.36

Another critical point is that proteomic signatures in a 
sample usually only reflect the true biological state when the 
time between tumor excision and freezing in liquid nitrogen is 
less than 10 minutes. A prolonged ischemia time affects tran-
scriptome and protein expression and phosphoprotein levels 
to a significant degree.37-40 Under these conditions, the normal 
tissue acts as an internal control for any particular patient, 
which should circumvent the issue of diurnal and any other 
kind of variation. There are strategies for obtaining normal 
tissue with tumor tissue, including sample microdissection and 
collection of normal tissue from a site distant from the tumor 
tissue during routine surgery. These collections are not part of 
standard practice and require a change in SOPs if proteomics 
becomes routine. Furthermore, it is not always clear which 
tissue serves as the “normal” comparator. For example, when 
testing a melanoma, normal skin is not the correct comparator 
tissue, and normal melanocytes would be impossible to isolate.

With further development in instrumentation and advances 
in computational interpretation, proteomics will likely be-
come an important part of cancer treatment, supplementing 
the information obtained from genomics and transcriptomics.

Impact
Cancer proteomics is expected to become a rich source of new 
targets and activated pathways for new therapies. We foresee a 
future where molecular reports include a kinome map of active 
pathways, driving the cancer biology, which could be used to 
predict drug response or cancer behavior. Deep data analyses 
will classify groups and subgroups, and the more data points 
available, the more accurate the predictions will be.

Challenges
Quantitative proteomics has come a long way, but high sen-
sitivity and throughput remain challenges. Additionally, we 
must create large and comprehensive databases to reflect and 
inform the oncology clinic.41,42

Circulating Omics: Liquid Biopsies
Technology
Blood samples contain circulating tumor cells, circulating 
tumor DNA, circulating tumor RNA, and exosomes. Single-
cell testing is emerging as technically possible but still experi-
mental and beyond the scope of this paper. Exosomes are 
tiny vesicles secreted by all healthy and abnormal cells and 
are abundant in body fluids.43 They contain protein, DNA, 
and RNA and are implicated in cell-to-cell communication 
and signaling. In this role, exosomes have potential as cancer 
biomarkers, analyzed in blood. Tumor-derived exosomes and 
their molecular cargo are under investigation as cancer prog-
nostic markers, therapeutic targets, drug carriers, and maybe 
more. However, exosome analysis is still investigational and 
will not be detailed here.44

Currently, the most promising circulating biomarker for 
clinical practice is circulating tumor DNA (ctDNA). The tech-
nology involved in the analysis of ctDNA from patient blood 
has dramatically improved over the last few years in par-
allel with DNA analysis techniques in general—from single 
biomarker to multiple gene analysis in panels to NGS tech-
nology. The use of molecular barcodes enables multiple gene 
testing and comprehensive ctDNA analysis (Fig. 2).

Impact
In a study published in Nature Medicine in 2020, successful 
trial enrollment using plasma-based ctDNA sequencing 
(GOZILA project) was compared to that using tumor tissue 
sequencing (GI-SCREEN project).45 The patient accrual suc-
cess rate was approximately 90% for both methods, but 
plasma testing has a shorter turnaround time than solid tissue 
testing—approximately 1½ weeks versus 1 month—and ap-
pears highly accurate. Archival tissue samples provide a snap-
shot of the molecular profile at the point in time of tissue 
harvesting, whereas liquid biopsies offer real-time informa-
tion. Moreover, a single-site tumor biopsy is a relatively poor 
representation of the intra and inter–tumoral heterogeneity 
spectrum, whereas liquid biopsies can reflect this heterogen-
eity.46 As tumors progress and metastasize or are exposed to 
stressors (such as targeted inhibitors or chemotherapy), they 
develop acquired gene alterations that are not uniformly dis-
tributed throughout single tumors or within multiple tumors 
in the same patient.46 ctDNA is invaluable in detecting het-
erogeneous resistance alterations and can swiftly assist with 
subsequent therapy selection.

New technologies have been adapted to use blood sam-
ples to detect the presence or absence of cancer. Currently, 
clinical testing is available to detect minimal residual disease 
(MRD). However, this technology has evolved to allow 
cancer screening blood tests and real-time blood sampling 
to monitor for therapeutic benefit and development of treat-
ment resistance. “Liquid biopsies” are simple to obtain and 
have the potential to transform much of what we do in cancer 
medicine today.

Limitations
The primary challenge facing ctDNA analysis is tumor shed-
ding—or the lack of it. Liquid biopsies do not provide any 
useful information in the case of a low or non-shedding 
tumor.47 Even in higher shedding tumors, fusion drivers 
cannot be detected using liquid biopsy due to low sensitivity. 
Furthermore, genotyping is not possible with ctDNA, and 
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aging poses a problem because it is strongly associated with 
clonal hematopoiesis (CHIP), which leads to normal cell mu-
tations that can easily be misclassified as tumor-derived mu-
tations in genes such as KRAS, JAK, and several others during 
ctDNA analysis.

Exosome analysis may overcome the problem of low-
shedding tumors, and research is underway to combat other 
challenges.

Artificial Intelligence
Technology
Artificial intelligence (AI) has offered medical expert sys-
tems, ontologies, and numerous other technologies to fight 
cancer. However, the sub-field of AI most relevant to cancer 
multiomics is machine learning, which encompasses deep 
learning (see the Digital Pathology section as an example). 
Machine learning’s purpose is to transform data and ob-
servations into knowledge and evidence-based medical 
decisions.

In applying machine learning to multiomics, the aim is 
to learn a predictive model that, given multiomics measure-
ments, can predict an outcome of interest in new samples, 
patients, or tissues. The term “outcome” is used as a general 
term to denote the quantity we would like to predict. Typical 
outcomes are the type of disease, disease status, a subtype 
of cancer, time to an event of interest (death, metastasis, re-
lapse, complication, diagnosis), and response to therapy. In 
addition, feature selection filters out irrelevant and redundant 
markers to identify the set of markers (called a signature) re-
quired for optimal prediction. Differential expression analysis 
considers the pairwise correlation (mutual information, pre-
dictive value) of a marker with the outcome, independently of 
any other marker. In contrast, typical machine learning and 
feature selection algorithms consider the correlation (pre-
dictive value) of a marker in the context of other markers. 
They consider the values of markers combinatorially when 
creating a predictive model. This is arguably the major con-
ceptual difference between the 2 methodologies. Machine 
learning can sort through hundreds of thousands of markers 
to find a signature and a possibly non-linear predictive model. 
The model can be used to inform clinical decisions (eg, change 
therapy if it is predicted to be ineffective); the markers in the 
signature can be used to design diagnostic assays, point to 
plausible drug targets, and provide intuition to the underlying 
biological mechanisms involved.

AI is increasingly used now because, today, we have 
ample computing power, more data, richer data, and public 
data. Just a few years ago, multiomics datasets were prac-
tically nonexistent, while now they are relatively common. 
Moreover, AI as a field has made theoretical and algorithmic 
breakthroughs in the last couple of decades. Essential AI in-
frastructure has been built, which consists of medical and 
biological ontologies and knowledge bases and allows the in-
corporation of prior knowledge into the algorithms.48,49

Impact
Multiomics using AI is just now beginning to impact clinical 
care, relying on 2 methodologies. The first one is automated 
machine learning (AutoML). AutoML platforms automate 
the machine learning process end-to-end, promising to dem-
ocratize it to clinicians, drastically boost productivity, and 

reduce errors. An oncologist can perform a sophisticated 
and, more importantly, correct machine learning analysis 
of their data automatically, provided they use accessible 
data formats and suitable, validated tools.50 A second one 
is the development of methods to integratively analyze large 
portions of available data and make clinical sense of them. 
One oncologist may focus on breast cancer and another on 
mesothelioma, and, traditionally, each dataset is studied in-
dependently. Although there will be many omics profiles, all 
these data are obtained on the same system, namely humans. 
They involve the same genes that follow the same biological 
rules, constraints, and patterns. A dataset on one disease may 
contain useful information when analyzing another. For ex-
ample, in recent work, researchers created maps of thousands 
of gene expression studies discovering biological similarities 
between different phenotypes and diseases at the molecular 
level.51 Future AI will allow us to process all the available 
data gathered on humans, find all the hidden patterns, and 
provide a global view of the inner workings of cells, tissues, 
and organs.

Challenges
AI in multiomics is currently a precious and costly resource 
because human experts are scarce and expensive. Simply 
put, the data are produced at a faster pace than we can 
graduate experts. As a result, most data generated are not 
analyzed or fully tapped for their informational content. 
Other intangible costs are related to AI being complicated 
and error-prone. It often uses a black box, obscuring under-
standing and making AI solutions harder to verify and 
apply an expert’s domain knowledge. Hence, not only is 
it easier for analysts to make mistakes, but it is harder for 
clinicians to correct them. The phenomenon where a pre-
dictive model is published as having excellent predictive 
power but then fails to generalize to new samples, also 
known as overfitting, is all too common, even among pa-
pers published in the most prestigious journals.52 Do not 
trust and always verify.

AI researchers will keep spawning new and wonderful al-
gorithms by the day, but these algorithms need not only data 
but semantically annotated data—beyond the simple annota-
tion schemes now available in most common biorepositories. 
Interpretability and explainability of AI-derived results are 
critical issues and essential AI research directions. Security 
and privacy are prerequisites for any analysis of personal 
data.

Finally, we need the democratization of AI for oncologists. 
AI for multiomics requires significant expertise, time, effort, 
and cost. At present, only well-funded projects, teams, and 
companies can provide oncologists with sufficient expertise to 
be productive. Tools that allow non-experts to derive correct 
results are needed.

Digital Pathology
Technology
Digitalization of pathology is long overdue because the 
standard practice in pathology still uses a 100-year-old tech-
nology. In digital pathology, glass tissue slides that would 
once have been viewed only under a microscope are inserted 
into an image scanner and saved as an image file for digital 
viewing on a computer. Digital slides can be read remotely 
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and stored in EMRs, and the images can be used to diagnose 
molecular results.52

It is not pathology per se but the technology applied to 
pathology slide analysis that has evolved; digital pathology 
(Fig. 4) is being combined with AI to make it a much stronger 
discipline.53

Digital Pathology and Deep Learning
As explained in the Artificial Intelligence section, AI has the 
subtopic of machine learning, and machine learning has the 
subtopic of deep learning. If, for example, a researcher has 
tumor tissue slide images from 200 cases with a good prog-
nosis and 200 cases with a poor prognosis, a computer can 
find the differences in these images using deep learning. By 
interrogating pixels in digital pathology using sophisticated 
deep learning methods, we can actually train a machine to 
extract the necessary information from the images to dis-
tinguish between good and poor prognoses in a highly re-
producible and objective way, reducing the interindividual 
variation in conventional pathology reporting. It may be 
considered that deep learning is the true AI because it selects 
the important features captured from the digital, pixelated 
landscape.

The quality of slide images for the deep-learning pro-
cess—their resolution, or the number of pixels in a defined 
area—has been in existence for the last 20 years. Other ana-
lytical technologies had to evolve in parallel so that large data 
sources could be mined optimally. Most significantly, a great 
deal of computational power and an efficient way to handle 

big data are required for deep learning in digital pathology. 
This has now all fallen into place.

Digital pathology and deep learning will not make the 
pathologist obsolete; quite the opposite. Pathologists will 
become more contributory players in personalized medicine 
than is currently the case. This natural evolution, embracing 
objective and quantitative image analysis, permits more pre-
cise prognostic information to be made available to the multi-
disciplinary team.

Impact
Based on the same routine tissue sections, deep learning can 
extract so many different features from an image that it is now 
possible to classify a patient by prognosis as well as diagnosis.

Although tumor molecular profiling has had some pre-
dictive success, its impact on most patients with colorectal 
cancer has been limited. The molecular biology of colorectal 
tumors was explored using DNA sequencing and RT-PCR in 
paraffin-embedded tissue. The genetic algorithms developed, 
which focused on known oncogenes and canonical signaling 
pathways, were relatively weak. Hazard ratios were some-
where between 1.5 and 2, and the algorithms were not quite 
enough to guide our treatment decision-making.54 We still 
were unsure whether we should or should not offer adjuvant 
therapy, whether we should or should not intensify treat-
ment, whether we should or should not look at the duration 
of therapy we gave. While acknowledging the progress made 
in other tumor types, after 10 years of looking at the som-
atic tumoral mutation landscape and RNA transcriptomic 
profiling in colorectal cancer, the tool that ended up being 
sufficiently clinically useful in defining patient prognosis and 
enabling clinical decision-making in terms of hazard ratio and 
statistical power was essentially the 100-year-old discipline of 
pathology, albeit upgraded by digitization and deep learning. 
At this point, it should be noted that advancements in digital 
pathology and multiplex staining of tissues make the com-
bined microscopic evaluation of various markers in parallel 
possible; hence the discipline can be quite powerful.55

A recent study illustrates the potential of deep learning 
coupled with digital pathology, wherein scanned images of 
H&E-stained primary colorectal tumor tissue from patients 
with stage II and III disease were coupled with computerized 
free learning to develop a powerful biomarker of outcome.56 
To this end, several million image tiles from 4 cohorts of pa-
tients were processed. The patients were separated according 
to whether or not they had a distinct outcome—a distinct out-
come could be either good or bad. Image tiles from patients 
with distinct outcomes facilitated deep learning. Data from 
the patients with indistinct outcomes then allowed the devel-
opment of a prognostic biomarker, which was subsequently 
tested on over 900 patients and independently validated in 
another thousand or so patients treated with single-agent 
capecitabine. The biomarker had the potential to guide ad-
juvant treatment selection according to which patients were 
at low risk from their disease and could avoid therapy and 
which patients needed more aggressive treatment.56 This 
marker was more potently prognostic than any existing gen-
omic or traditional marker.

All the other comparative methods in genomics typically 
mean another sample taken from the patient and added costs 
of laboratory processing, including reagents and probes, 
and considerable analytical work and time. Here, we take a 
digital image of an existing routine slide from the pathology 

Figure 4. Digital images of prostate cancer. (A) Whole slide, prostate 
cancer. (B) High resolution of a section of the slide.
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department and analyze it; the analysis takes only one mi-
nute, can be done remotely on a laptop with a GPU card, has 
little to no additional costs, and necessitates no additional 
sampling from the patient. Genomics and traditional marker 
assessment still have a place in diagnosis and prediction of 
patients living with cancer; only they have much greater po-
tential when combined with digital pathology in the field of 
multiomics.

The Importance of Tissue Quality
Technology
If we intend to personalize care for patients with cancer, we 
must also objectively care for their tissue samples. Molecular 
profiling, including assessment of biomarkers to adequately 
stratify a patient’s cluster and therefore guide cancer therapy, 
require that tissue samples accurately represent a patient’s 
tumor biology and not surgical manipulation or ischemia-
induced alterations in gene expression and protein phosphor-
ylation.37 Preanalytical variables lead to biomarker instability, 
impacting comprehensive molecular analyses and patient 
tissue phenotyping.57

Updated standard operating procedures (SOPs) for tissue 
collection and handling must be in place to guide personnel 
in the swift excision and preservation of tissue for diagnostic 
purposes, in obeyance with histopathology rules, while also 
immediately freezing a portion of the sample for multiomics 
study.37,57 Essentially, speed and efficiency are required as un-
frozen tissue outside of the body for more than 10 minutes 
might be compromised when considering molecular ana-
lyses.37 This is of particular relevance, for example, when ana-
lyzing gene expression and phosphoproteomic data to avoid 
spurious and misleading results. Implementing these updated 
tissue collection and preservation procedures as a standard 
practice requires that dedicated trained personnel are in the 
surgical suite, committed to tissue quality and procuring an 
optimal frozen tissue sample while interfering as little as pos-
sible with the routine workflow of the surgical suite.

This kind of tissue collection has not been the standard 
of care to date because, until recently, it has not been seen 
as a critical component of multiomics analyses. In fact, in 
this respect, most surgical suites still operate as they did in 
the nineteenth century because the current standard of care 
is built on morphological analysis of histological sections. 
Tissue morphology is less sensitive to change than is tumor 
biology—the cellular interaction of molecules. Also, it ap-
pears that the impact of surgical manipulation and ischemia 
on the molecular composition of tumor tissue is more sig-
nificant than seen for normal tissue, probably because tumor 
cells are generally more active than normal cells.37

The collection of normal tissue at the same time as tumor 
tissue is critical. This matched tissue collection serves as a 
much-needed comparison methodologically, allowing time-
sensitive variations to be separated from true tumor tissue 
anomalies. In addition, the corresponding normal tissue type 
should be well defined to obtain truly comparable tissue 
pairs. For example, colon cancer develops from epithelial 
cells of the mucosa. Therefore, only mucosal tissue repre-
sents the normal control. The entire colon wall contains 
muscle cells primarily and, thus, is not a meaningful normal 
control.

Radiology-guided tissue collection minimizes ischemia time 
but provides only small pieces of tissue, which dry out more 

quickly than a larger piece of tissue. Adequate collection and 
preservation speed are therefore imperative.

If the decision is made to fix tissue sections in formalin, 
it should be considered that tissue quality is not reliable for 
many newer molecular tests because it takes about an hour 
per 5 mm of tissue for the formalin to preserve every cell in 
that tissue sample. Freezing is a requirement of any test that is 
not focused on a few well-defined proteins of known stability. 
Moreover, if the aim is to integrate complex data points to 
get a much more defined picture of the tumor, as we can now 
do with bioinformatics and AI solutions, then only liquid ni-
trogen freezing of tissue is acceptable.

Impact
As incorrect tissue handling can dramatically impact basic 
test results, it may lead to a completely different patient prog-
nosis and therapeutic track. Most clinical hospitals are not 
set up for the kind of precise tissue collection described here. 
However, until these specially developed SOPs are in place 
(globally), the validity of diagnostic testing that goes beyond 
basic genomics should be questioned, and patient care and 
safety may be jeopardized.37,57,58

Using immunohistochemical analysis, Koury et al showed 
that estrogen and progesterone receptor immunoreactivity and 
HER2 positivity were lost after a delay of time-to-formalin 
fixation of 1-2 hours, leading to false-negative results.59 
Considering time-to-formalin fixation was routinely 2-3 hours, 
the impact on patient therapy was dramatic. Other targets that 
serve as diagnostic biomarkers, such as EGFR, are also affected 
by surgical ischemia time, and using them to guide treatment 
is questionable under current tissue collection and fixation 
guidelines.37 The 2010 paper by Nkoy et al60 reports on their 
retrospective analysis of this concept across several hospitals, 
demonstrating that Friday and Saturday surgeries led to less 
accurate detection of estrogen and progesterone receptors in 
breast tumor tissue by immunohistochemistry—potentially 
negatively impacting patient treatment. The breast cancer com-
munity paid attention to these data, and the American Society 
of Clinical Oncology and the College of American Pathologists 
drew up preanalytical procedural guidelines, which can be 
found in the Accreditation Checklist of the CAP Laboratory 
Accreditation Program.58 However, these breast cancer guide-
lines stand alone and this wisdom is yet to find its way into 
other disease-group guidelines. In addition, an ischemia time 
window of 1 hour (as recommended by the CAP guidelines) 
still jeopardizes the analysis of many potential biomarkers 
and is rather a compromise between clinical practicability 
and scientific requirement for advanced analytics. The future 
of immunotherapy is dependent on the assessment of multiple 
biomarkers. When assessing numerous signatures using dif-
ferent technologies, preanalytical factors play even more of a 
significant role in ensuring accurate prediction of clinical out-
comes. This concept is reflected in recent guidelines for bio-
marker validation in cancer immunotherapy.61

Considering biomarker expression levels vary because 
of handling errors or slow fixation time by formalin, the 
powerful technologies discussed in this review will remain 
limited and can only be applied to a few highly stable tissue 
biomarkers. Moreover, now that we are trying to understand 
numerous molecules in parallel, if we genuinely want to see 
progress in oncology, standardized rapid collection and liquid 
nitrogen-preservation of tissues inarguably form the only 
sturdy foundation on which to build.
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Challenges
Transporting this research-based effort to regular practice 
poses a challenge. Facilities for this kind of rigorous sample 
collection and work-up, including frozen treatment, are not 
universally available in surgical suites.

A workaround using PAXgene fixation and other fixative 
reagents is under investigation. PAXgene methodology works 
for blood samples, and the use of other novel solid tissue fixa-
tives is affording significant improvement over traditional 
fixation methods. However, fixation methods still do not 
have the edge over tissue freezing in liquid nitrogen and po-
tentially lead to a loss of molecular information. The incorp-
oration of more stringent tissue collection and preservation 
methods into official guidelines is probably still in the distant 
future, but raising awareness today is vital. Specialized cancer 
centers are able to apply the required rigorous standard of 
tissue handling for multiomics analysis, and some have al-
ready become beacons for the development of multiomics 
data analysis for personalized medicine to its full potential. 
By demonstrating medical value for their patients, the official 
guidelines might change and allow reimbursement—the main 
barrier for implementing higher standards.

The techniques and instruments for multiomics analyses 
are available. The flow and the process now need to change. 
Until then, there will be a loss of multiomic information and 
progress.

Ethical Considerations in Multiomics
One of the many lessons learned from the Human Genome 
Project was the importance of integrating ethical deliberation 
into emerging translational science.62 This process not only 
facilitates the development of health policies that are scientif-
ically and ethically sound but also fosters discussion amongst 
various stakeholders about the desired goals of implementing 
new technologies. As with any new technology, including 
multiomics tests, many of the looming questions can be just 
as important as the ultimate answers.

For example, what is the goal of precision medicine? Is it 
better health, more knowledge, or the identification of op-
timal treatment options? Clinicians, researchers, and patients 
are likely to have different answers. Moreover, responses vary 
depending on societal, community, cultural, and individual 
perspectives. Thus, discussion amongst all stakeholders is 
critical.

Indeed, an informed consent discussion is central to eliciting 
the patient’s and the clinician’s goals and expectations. From 
a patient’s perspective, the purpose of pursuing testing with 
multiomics technologies may be simply “to get better” or “to 
have more time with loved ones.” From the clinician’s per-
spective, the goal may be to determine the treatments most 
likely to give the patient a good response. However, a good 
response does not necessarily translate to what the patient de-
sires regarding a satisfactory quality of life or restoration to a 
prior state of “health.”

In addition, selecting a treatment course when there are 
multiple options can be challenging. Clinicians may aim to 
enroll patients in clinical trials, in which the overarching goal 
is to acquire data that will guide future treatments for specific 
types of patients. Thus, for an individual patient, there may be 
little or no added benefit from participating in research rela-
tive to standard care, but research patients are not getting less 
than standard care in most trials. This concept is often not 

well understood by patients; likewise, it is often difficult for 
clinicians to convey.63 In addition, some treatments may be 
inaccessible due to cost or other logistical considerations. It is 
also possible that multiomics analyses reveal no therapeutic 
targets, although standard therapies and research trials may 
still be appropriate options to consider.

Another consideration is that tumor genomic profiling (ie, 
somatic testing) to identify therapeutic targets is increasingly 
paired with germline testing. Patients need to understand that 
while pathogenic germline variants may impact treatment 
selection, such testing can reveal risks for other cancers and 
risks relevant to their relatives.64 Some variants may be con-
sistent with the patient’s phenotype (eg, a BRCA2 variant in a 
patient with pancreatic cancer), whereas others may be unex-
pected (eg, a BRCA2 variant in a patient with lung cancer and 
no family history of cancer). Moreover, as testing expands to 
the whole-genome, pathogenic variants will be identifiable in 
many cancer and non-cancer-related genes.65 How much of 
this information will be disclosed to patients, and through 
what process? Do patients have the right to not know about 
the presence of specific genetic variants? Patients cannot opt 
out of test results unless they know and understand their 
significance.

Research is central to progress in Western medicine, which 
is why many patients offered multiomics testing as part of 
their clinical care are also asked to allow their biospecimens 
and data to be used in research. Research usually necessitates 
data sharing, sometimes with industry partners,66 and herein 
lies a problem because many patients have concerns about 
privacy and data sharing. Transparency and trust-building are 
crucial to promoting patient autonomy and engagement.67

Finally, current results will quickly become outdated. Is 
there a responsibility to re-analyze and reinterpret data and 
then recontact the patient or family members about newly 
identified germline pathogenic variants or other recently dis-
covered clinically significant information?68 Such disclosures 
can cause anxiety and confusion, and it is important to clarify 
expectations before testing as part of the informed consent 
process.

To the extent that we can anticipate these and other ethical 
challenges, clinicians and researchers will be better equipped 
to empower patients to make decisions that will best address 
their healthcare needs and goals.

Discussion
The standard of care in medicine is not the ceiling we reach 
for but the floor on which we stand. It represents what we 
have achieved to date. Often, changes in the standard of care 
come slowly, incrementally, like climbing stairs one floor at a 
time, with breaks in between to catch our breath. The pace 
at which precision medicine norms are changing is much 
more of a steep incline—rapid progress if you can keep your 
footing; unfortunate falls if not. In this overview of precision 
medicine 2021, we have emphasized the technologies we will 
increasingly rely on: the strengths and the weaknesses. As 
practicing cancer specialists, it is critical that we understand 
the technology as it will increasingly fall on us to interpret the 
results. Equally important is the development of clinical re-
ports that are both all-encompassing and user-friendly. These 
may use visual depiction—imagery instead of text—but what-
ever format they take, treating physicians’ next steps in the 
treatment of their patients should be clear.
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Our primary conclusions are that precision medicine will 
continue to expand to a multiomic profile, and the multiple 
omic layers will provide the oncologist with a complete dy-
namic vision of cancer, the capture of which relies wholly 
on preanalytical and assay quality. Artificial intelligence, 
machine learning will be the fundamental tool in processing 
and translating these molecular data, providing us with the 
prognostic and predictive answers we seek (Fig. 5). We also 
conclude that multiomic analyses will give value to our 
healthcare systems, lowering costs through defining more 
efficient treatment decision-making. As such, multiomic 
profiling will rapidly become the new standard of care for 
us all, and once we reach that point, maybe we will find a 
moment to look around, take in the view, and catch our 
breath.
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