
Abstract. Background/Aim: In precursor B-cell lineage acute
lymphoblastic leukemia (BCP-ALL), leukemic cells harbor
genetic abnormalities that play an important role in the
diagnosis, prognosis, and treatment. A subgroup of BCP-ALL is
characterized by the presence of a Philadelphia (Ph)
chromosome and a chimeric BCR::ABL1 gene, whereas in
another subgroup, leukemic cells exhibit near-haploidy with
chromosome number 24-30. This study presents the third
documented case of BCP-ALL in which a near haploid clone
concurrently displayed a Ph chromosome/BCR::ABL1. Case
Report: Bone marrow cells obtained at diagnosis from a 25-
year-old man with BCP-ALL were genetically investigated using
G-banding, fluorescence in situ hybridization, and array
comparative genomic hybridization. Leukemic cells had an
abnormal karyotype 28<n>,X,-Y,+6,+10,+18,+21,+ der(22)
t(9;22)(q34;q11)[13]/28,idem, del(10)(q24),der(12) t(1;12)
(q21;p13)[2]/46,XY[3], retained heterozygosity of the disomic
chromosomes 6, 10, 18, and 21, had breakpoints in introns 1 of
ABL1 and BCR, and carried a BCR::ABL1 chimera encoding
the 190 kDa BCR::ABL1 protein. Conclusion: The coexistence
of the BCR::ABL1 chimera and near-haploidy in the same
cytogenetic clone suggested a possible synergistic role in
leukemogenesis, with the former activating signaling pathways
and the latter disrupting gene dosage balance.

Precursor B-cell acute lymphoblastic leukemia (BCP-ALL)
is a hematological malignancy characterized by uncontrolled
proliferation of precursor lymphoid cells committed to the
B-cell lineage (1). BCP-ALL affects individuals of any age,
but it is more commonly diagnosed in children and
adolescents. It is one of the most prevalent types of leukemia
in pediatric populations with peak incidence between 2 and
5 years old. However, BCP-ALL can also affect adults, and
there is a second peak in incidence among adults over the
age of 50 (1). Leukemic cells carry cytogenetic aberrations
that play an important role in the diagnosis, prognosis, and
treatment of BCP-ALL (2-4). A subgroup of BCP-ALL is
characterized by the presence of a Philadelphia chromosome
which is the der(22)t(9;22)(q34;q11) of the balanced
t(9;22)(q34;q11) chromosomal translocation. The
translocation fuses the BCR activator of RhoGEF and
GTPase (BCR) gene from 22q11 with the ABL proto-
oncogene 1, non-receptor tyrosine kinase (ABL1) gene from
9q34 generating a chimeric BCR::ABL1 gene on the
der(22)t(9;22)(q34;q11) (5). BCR::ABL1 encodes a chimeric
tyrosine kinase that activates various signaling pathways (6,
7). BCP-ALL with Philadelphia chromosome had a poor
prognosis, but the development of increasingly effective
tyrosine kinase inhibitors since the early 2000s have
dramatically improved their prognosis (5, 8-12).

Hypodiploidy (less than 46 chromosomes) is a rare
recurrent chromosomal abnormality, which is found in
another subset of BCP-ALL (13-15). Leukemic cells with
hypodiploidy may also undergo endoreduplication resulting
in an exact or near-exact doubling of chromosome numbers
termed as “masked hypodiploidy” (16, 17). Hypodiploidy is
divided into three subgroups: near-haploidy with chromosome
number 24-30, low hypodiploidy (31-39 chromosomes), and
high hypodiploidy (40-45 chromosomes) (13-15, 18-20). 

The Mitelman database of chromosome aberrations and
gene fusions in cancer (Database last updated on October 16,
2023) contains 18999 entries of BCP-ALL with aberrant
chromosomal aberration. Only 162 of them have a near-
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haploid karyotype with chromosome number 24-30
(162/18,999=0.85%) (21). Near-haploid neoplastic B-cells
are characterized by commonly loss of chromosomes 3, 7, 9,
15, 16 and 17 and retention of disomies of chromosomes X,
Y, 8, 10, 14, 18, and 21 (14, 15, 20). Somatic genetic
alterations targeting receptor tyrosine kinase and RAS
signaling, deletion of the IKAROS family zinc finger 3
(IKZF3) gene, and deletions of a histone cluster at
chromosome 6p22 have been reported in 70.6%, 13.2%, and
19.1%, of BCP-ALLs with a near haploid karyotype,
respectively (13). Moreover, a recurring acquired genetic
alteration involving the phosphoprotein membrane anchor
with glycosphingolipid microdomains 1 (PAG1) gene,
located on chromosome sub-band 8q21.13, was identified in
10.3% of near haploid BCP-ALL cases. The majority of
these PAG1 alterations manifested as homozygous deletions
affecting the upstream region and the first exon of the gene,
resulting in a complete loss of PAG1 expression (13). 

Near-haploidy in BCP-ALL is generally recognized as a
high-risk cytogenetic abnormality (22-24). BCP-ALL
patients with near-haploidy often have a less favorable
prognosis compared to those with standard-risk cytogenetics
(25, 26). High-risk cytogenetics are associated with an
increased likelihood of treatment resistance and a higher risk
of relapse (25, 26).

We report here an intriguing case of BCP-ALL in which
a near haploid clone concurrently displays a Philadelphia
chromosome and a chimeric BCR::ABL1 gene. 

Materials and Methods

Ethics statement. The study was approved by the Regional Ethics
Committee (Regional komité for medisinsk forskningsetikk Sør-Øst,
Norge, http://helseforskning.etikkom.no; 2010/1389/REK sør-øst A).
Written informed consent was obtained from the patient. The Ethics
Committee’s approval included a review of the consent procedure.
All patient information has been de-identified.

G-Banding and karyotyping. Bone marrow cells obtained at
diagnosis were cytogenetically investigated (27, 28). Chromosomal
preparations were G-banded using Leishmanʼs stain (Sigma-Aldrich,
St. Louis, MO, USA) and karyotyped according to the 2020
Guidelines of the International System for Human Cytogenomic
Nomenclature (29).

Array comparative genomic hybridization (aCGH) analysis. aCGH
was performed using CytoSure array products (Oxford Gene
Technology, Begbroke, UK) following the company’s protocols (30,
31). The reference DNA was Promegaʼs human genomic male DNA
(Promega, Madison, WI, USA). The slides (CytoSure Cancer +SNP
array, 4x180k) were scanned in an Agilent SureScan Dx microarray
scanner using Agilent Feature Extraction Software (version 12.1.1.1)
(Santa Clara, CA, USA). Data were analyzed using CytoSure
Interpret analysis software (version 4.11.36) (Oxford Gene
Technology). Apart from copy number variation (CNV), the software
detects allelic imbalance and loss-of-heterozygosity based on the B-

allele frequency methodology and single nucleotide polymorphism
(SNP) (32). Annotations are based on human genome build 19.

Fluorescence in-situ hybridization (FISH) analysis. FISH was
performed on interphase nuclei of bone marrow cells from the
patient using CytoCell BCR/ABL(ABL1) translocation, dual fusion
probe and CytoCell myProbes ABL1 breakapart FISH probe
(Oxford Gene Technology). 

Case Report and Results

A 23-year-old previously healthy man was admitted to a local
hospital due to poor general condition, night sweats, and
increasing pancytopenia over a few weeks. A few months
before admission, he had a perianal abscess that was
successfully drained, and a perianal fistula was diagnosed.
Prior to admission, he also had tonsillitis with streptococci and
received antibiotic treatment. Blood and bone marrow flow
cytometry at the time of admittance showed 46% and 94%
blasts, respectively, consistent with B-cell precursor acute
lymphoblastic leukemia (BCP-ALL). He was consequently
transferred to our university hospital for induction treatment.

Upon clinical examination, he was in relatively good
general condition. There were no enlarged lymph nodes in
the neck, axillae or groin, and no hepatosplenomegaly or
testicular tumors were observed. However, a probable
perianal fistula opening was identified. He was afebrile and
had stable circulatory and respiratory status.

Blood tests revealed anemia (Hb 8.4 g/dl, normal range
13.4-17.0), a normal leukocyte count (7.3×109/l, normal
range 3.5-10.0), neutropenia (0.4×109/l, normal range 1.5-
7.3), and thrombocytopenia (30×109/l, normal range 145-
390×109/l) after platelet transfusion before transfer from the
local hospital. There were no signs of disseminated
intravascular coagulation (DIC), spontaneous tumor lysis or
renal failure, but lactate dehydrogenase (LDH) was elevated
to 324 U/l (normal range 105-205 U/l). Blood and bone
marrow smears were completely dominated by small to
medium-sized blasts with scant cytoplasm. No granules or
Auer rods we observed.

In flow cytometry, 94% of the viable nucleated cells in the
bone marrow were B-lymphoblasts with the following
phenotype: CD45 bimodal, CD2-, CD3-, CD4 bimodal
(72%+, likely artifact), CD5-, CD7-, CD10 bimodal (96%+),
CD11b-, CD11c-, CD13-, CD14-, CD16-, CD56-, CD19+,
CD20-, CD22+, CD24+, CD33 bimodal (53%+), CD38
weak+, CD64-, CD117-, HLA-DR+, nuTdT+, cyCD3-,
cyCD79a+, cyMPO-, cyIgM-, cyCD22 weak+, CD15-,
CD49f+, CD58+, CD66b-, CD66c weak+ (24%), CD73-
(small subset+, approximately 3-7%), CD81+, CD86-,
CD123-, CD133-, CD304 bimodal (57%+), NG2-, TSLPR-
compatible with BCP-ALL.

Standard induction therapy was initiated according to the
ALLTogether1 protocol, including dexamethasone, vincristine,
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daunorubicin, intravenous PEG-asparaginase, and intrathecal
methotrexate (33, 34). Later on the same day, molecular
pathological examination revealed a BCR::ABL1 minor fusion
transcript corresponding to t(9;22)(q34;q11). Therefore, a
tyrosine kinase inhibitor (imatinib) was started as additional
treatment. According to Norwegian guidelines, allogeneic
bone marrow transplantation (allo-HSCT) was planned upon
achieving minimal residual disease (MRD) negativity. He was
discharged from the inpatient unit on treatment day 12, and
there were no complications, such as tumor lysis, neutropenic
fever, or other complications during induction therapy. A
significant part of the subsequent treatment was conducted on
an outpatient basis.

On treatment day 15, MRD in the bone marrow aspirate
was 36% blasts by flow cytometry, with an unchanged flow
phenotype. Flow cytometry and molecular pathological
examination of the BCR::ABL1 minor fusion transcript on
day 29 indicated a decrease to 2.2% and to 0.8%,
respectively. Following induction therapy, the tyrosine kinase
inhibitor was switched to dasatinib, and the treatment
protocol was changed to the NOPHO ALL 2008 protocol
(35) according to the department’s procedures, involving 6-
mercaptopurine (6MP), vincristine, high-dose methotrexate
(5 g/m2), and intrathecal methotrexate. PEG-asparaginase
was omitted to reduce the risk of hepatotoxicity during
concurrent treatment with the tyrosine kinase inhibitor.

After a few weeks of respiratory symptoms, a thoracic
computed tomography (CT) scan was performed, revealing
five nodular consolidations. A CT scan of the sinuses showed
pronounced mucosal thickening, and both examinations
raised suspicion of invasive mold infection. Bronchial lavage
was performed twice without microbiological findings.
Empirical antifungal treatment with isavuconazole was
initiated for mold infection.

Two and a half months after starting treatment, he
achieved minimal residual disease (MRD) of 0.014% based
on molecular pathological examination of the BCR::ABL1
minor fusion transcript in the bone marrow.

The patient underwent allogeneic bone marrow
transplantation approximately 4 months after the initiation of
treatment. Prior to transplantation, an echocardiogram
surprisingly showed a significant decrease in left ventricular
function from approximately 60% at the start of treatment to
45%, most likely related to dasatinib treatment, which was
subsequently discontinued. MRD was no longer detectable.
Originally planned conditioning with ETO/TBI (MAC) was
changed to RIC (Reduced Intensity Conditioning) due to
heart failure. The modified conditioning regimen involved
NCI Cy/Flu/TBI6.

The donor was unrelated, HLA-identical, with blood type
AB+, matched to an A+ recipient. Both the donor and
recipient were CMV-negative and EBV-positive. Peripheral
blood stem cells were used for transplantation. Graft-versus-

host disease (GvHD) prophylaxis included anti-thymocyte
globulin (ATG) on days -2 to -1 (total 4 mg/kg),
cyclosporine from day -1, and methotrexate IV on days +1,
+3, and +6. Isavuconazole was administered throughout the
transplantation process as mold prophylaxis.

The patient had an uncomplicated course during the
hospital stay, achieving neutrophil engraftment (>0.5) on day
+13 and platelet engraftment (>20) on day +15. Trilineage
engraftment was confirmed in the bone marrow smear on
day +28, and on the same day, donor chimerism was 99% in
an unseparated sample.

EBV reactivation occurred with rising EBV DNA levels
up to 27,000 IU/ml, but there were no signs of post-
transplant lymphoma. This was treated with a dose of
rituximab, resulting in a significant decrease in EBV DNA.
On day +44, Clostridium difficile toxin was detected in the
feces and was treated with vancomycin.

A prophylactic reintroduction of a tyrosine kinase inhibitor
(imatinib) will commence once the patient is in a stable
condition, with treatment expected to continue for two years.

Diagnostic cytogenetic examination of short-term cultured
cells from the patient’s bone marrow revealed a near haploid
clone described by the karyotype 28<n>,X,-Y,+6,+10,
+18,+21,+der(22)t(9;22)(q34;q11)[13]/28,idem,del(10)(q24),d
er(12)t(1;12)(q21;p13)[2]/46,XY[3] (Figure 1A and B). 

Interphase FISH with ABL1 break-apart probe detected a
Red/Green signal, corresponding to the normal ABL1 locus,
together with a green signal, corresponding to terminal (3’-
end part of ABL1) in 156 out of 209 nuclei (Figure 2A).
FISH with a dual fusion probe for BCR/ABL1, detected in
150 out of 201 interphase nuclei, a green, a red signal and a
Red/Green signals corresponding to normal BCR, normal
ABL1 and BCR::ABL1 fusion gene (Figure 2B). 

aCGH confirmed the results of the main cytogenetic clone
seen in G-banding, showing disomy for chromosomes 6, 10,
18, and 21, loss of chromosome Y, loss of most of
chromosome 9 from chromosome sub-band p24.3 to sub-band
9q34.11, and loss a region of chromosome 22 from the sub-
band q11.23 to q13.33 (Figure 3A-C). Furthermore, aCGH
showed that the breakpoint in ABL1 occurred in intron 1, in a
narrow region of 2560 bp in the interval Chr9: 133713031-
133715590 (Figure 3B). In the BCR gene, the breakpoint was
found in intron 1, in a narrow region of 3502 bp between the
interval Chr22: 23585229-23588730 (Figure 3C). 

BCR::ABL1 chimera with breakpoints in intron 1 of ABL1
and BCR results in the most common BCR::ABL1 transcript
in Ph+ ALL patients, that is the first exon (e1) of BCR is
spliced to the second exon of (a2) ABL1 (e1-a2 fusion),
coding for a 190 kDa BCR::ABL1 protein (36, 37). 

The aberrant chromosomes del(10)(q24) and der(12)
t(1;12)(q21;p13) which were present in the small subclone
(only 2 metaphases found) were not detected by aCGH.
Analysis of allelic imbalance and loss-of-heterozygosity
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Figure 1. Cytogenetic analysis of short-term cultured cells from the patient’s bone marrow at diagnosis. (A) Karyogram from the main near haploid
clone with karyotype 28<n>,X,-Y,+6,+10,+18,+21,+der(22)t(9;22)(q34;q11). (B) Karyogram from the small subclone with the karyotype 28<n>,X,-
Y,+6,+del(10)(q24),der(12)t(1;12)(q21;p13),+18, +21,+der(22)t(9;22)(q34;q11).



showed that the chromosomes 6, 10, 18, and 21 retained
heterozygosity (Table I). 

Discussion 

Near-haploid and Philadelphia chromosome/BCR::ABL1
chimeric gene are two different recurrent primary genetic
aberrations in BCP-ALL (1, 2, 5, 14, 15, 19, 22, 23). The
presence of a Philadelphia chromosome/BCR::ABL1 chimeric
gene in a near haploid clone is an extremely rare genetic
event. Including the present case there have been only three
cases of BCP-ALL with a near-haploid clone harboring a
Philadelphia chromosome/BCR::ABL1 chimeric gene (Table
II) (38, 39). The three BCP-ALLs exhibit different
chromosome numbers, different retention of disomies, and
none of them involved endoreduplication (Table II) (16, 17).
In case 1 of Table II, the near-haploid clone had a balanced
t(9;22)(q34;q11) together with a normal chromosome 9. Both
der(9)t(9;22)(q34;q11) and der(22)t(9;22)(q34;q11) were
present within the near haploid clone, indicating that the
t(9;22)(q34;q11) translocation occurred after the massive loss
of chromosomes and the formation of near haploid clone. In
cases 2 and 3 of Table II, the near haploid clone had only the
der(22)t(9;22)(q34;q11), which also carried the BCR::ABL1
chimeric gene, together with a normal chromosome 9. This
cytogenetic finding indicated that a balanced t(9;22)(q34;q11)

translocation was the first (cyto)genetic event. The
subsequent massive loss of chromosomes to generate a near
haploid clone also included the loss of the der(9)t(9;22)
(q34;q11). 

The Mitelman database of chromosome aberrations and
gene fusions in cancer (last updated of the database was on
January 16, 2024) contains four male BCP-ALL patients
with chromosome number 28 and retention of disomies of
chromosomes 6, 10, 18, and, 21 (13, 16, 21). Two of those
patients also carried a second clone resulting from
endoreduplication (13, 16, 21).  

Loss-of-heterozygosity based on the B-allele frequency
methodology and single nucleotide polymorphism (SNP)
(32) showed that the disomic chromosomes 6, 10, 18, and,
21 retained heterozygosity (Table I). This is consistent with
previous observations that in neoplasms with near-haploid
karyotypes, the disomic chromosomes are both maternal and
paternal (19, 40-43). aCGH also revealed that the
breakpoints in both the ABL1 and BCR genes occurred in
their intron 1. The BCR::ABL1 chimera, with breakpoints in
intron 1 of ABL1 and BCR, results in the most common
BCR::ABL1 transcript in Ph+ ALL patients, where the first
exon (e1) of BCR is spliced to the second exon of (a2) ABL1
(e1-a2 fusion), coding for a 190 kDa BCR::ABL1 protein
(36, 37). The p190 isoform BCR::ABL1 is insufficient for
malignant transformation and additional genetic aberrations
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Figure 2. Fluorescence in-situ hybridization (FISH) of the patient with BCP-ALL. (A) FISH with ABL1 break-apart probe on an interphase nucleus
resulted in a red/green signal, corresponding to the normal ABL1 locus, and a green signal, corresponding to terminal (3´-end) part of ABL1. (B)
FISH with a dual fusion probe for BCR::ABL1 on an interphase nucleus resulted in green, red and red/green signals corresponding to normal BCR,
normal ABL1 and BCR::ABL1 fusion gene.



are necessary for the development of Ph+ BCP-ALL (2, 6).
Thus, a combination of p190 isoform BCR::ABL1 and near-
haploidy may lead to leukemogenesis. The p190 isoform
BCR::ABL1 activates signaling pathways (44, 45) whereas
near-haploidy may affect thousands of genes disturbing gene
dosage balance (42, 46, 47).

Conclusion 

We present here the third case of a BCP-ALL in which a
near haploid clonal chromosomal aberration harboring a
Philadelphia chromosome/BCR::ABL1 chimeric gene. The
coexistence of the BCR::ABL1 chimera and near-haploidy

ANTICANCER RESEARCH 44: 1389-1397 (2024)

1394

Figure 3. Array comparative genomic hybridization (aCGH) examination of the bone marrow cells of the BCP-ALL patient. (A) Genetic profile of
whole genome showing gains of chromosomes 6, 10, 18, and 21, loss of chromosome Y, loss most of chromosome 9, from chromosome sub-band
p24.3 to sub-band 9q34.11, and loss a region of chromosome 22 from the sub-band q11.23 to q13.33 (A, B, and C). (B) aCGH showing that the
breakpoint in the ABL1 gene occurred in intron 1, in a narrow region of 2560 bp in the interval Chr9: 133713031-133715590. (C) aCGH showing
that the breakpoint in the BCR gene occurred in intron 1, in a narrow region of 3502 bp between the interval Chr22: 23585229-23588730. E: Exon.



suggests a potential synergistic role in leukemogenesis,
where the former activates signaling pathways and the latter
disrupts gene dosage balance.
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